If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x^2+6x-20=0
a = 18; b = 6; c = -20;
Δ = b2-4ac
Δ = 62-4·18·(-20)
Δ = 1476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1476}=\sqrt{36*41}=\sqrt{36}*\sqrt{41}=6\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{41}}{2*18}=\frac{-6-6\sqrt{41}}{36} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{41}}{2*18}=\frac{-6+6\sqrt{41}}{36} $
| X=0.09x+12.75 | | 0.12m+1.6=-0.8 | | -3×-7y=-19 | | -11⦁x=99 | | 7(m-85=98 | | d-56/5=8 | | 475–y=324 y= | | x=3x+22/5 | | 4(h+3)=52 | | 32=h/7+30 | | 4^x+6=3x | | 82=22+4c | | 1/8x+5/2=17/4 | | Y=300x+28 | | 3n/4=-2/3 | | Y=100x+36 | | 7×2-y=19 | | d-4=24 | | 45w+310=72 | | (9x-7)+(13x-43)=180 | | (2x+8)70=190 | | 5h+4-7h-6=-22 | | 2x-15=3x+15+5x-5 | | (2x+8)70=80 | | 3x+3x=36x | | x+(-6)=-22 | | 18.2x+37.8=119.7 | | -10x-7=-57 | | 6+2x*4=14 | | 3/4x-5=1/2x-7 | | 1-37=x+37 | | 3x+41=166 |